翻訳と辞書
Words near each other
・ Centerville, Texas
・ Centerville, Trempealeau County, Wisconsin
・ Centerfield (song)
・ Centerfield Limestone
・ Centerfield, Kentucky
・ Centerfield, New York
・ Centerfield, Utah
・ Centerfire ammunition
・ Centerfold
・ Centerfold (disambiguation)
・ Centerfold (group)
・ Centerfold (song)
・ Centerfold Girls
・ Centergazservice-opt
・ Centericq
Centering matrix
・ Centering prayer
・ Centerless grinding
・ CenterLink
・ Centerm
・ Centerpiece (song)
・ Centerpin fishing
・ Centerplate
・ Centerpoint
・ Centerpoint (geometry)
・ CenterPoint Energy
・ CenterPoint Energy Gas Transmission
・ CenterPoint Energy Plaza
・ Centerpoint High School
・ CenterPoint Intermodal Center


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Centering matrix : ウィキペディア英語版
Centering matrix
In mathematics and multivariate statistics, the centering matrix〔John I. Marden, ''Analyzing and Modeling Rank Data'', Chapman & Hall, 1995, ISBN 0-412-99521-2, page 59.〕 is a symmetric and idempotent matrix, which when multiplied with a vector has the same effect as subtracting the mean of the components of the vector from every component.
== Definition ==
The centering matrix of size ''n'' is defined as the ''n''-by-''n'' matrix
:C_n = I_n - \tfrac\mathbb
where I_n\, is the identity matrix of size ''n'' and \mathbb is an ''n''-by-''n'' matrix of all 1's. This can also be written as:
:C_n = I_n - \tfrac\mathbf\mathbf^\top
where \mathbf is the column-vector of ''n'' ones and where \top denotes matrix transpose.
For example
:C_1 = \begin
0 \end
,
:C_2= \left(\begin
1 & 0 \\ \\
0 & 1
\end \right ) - \frac\left(\begin
1 & 1 \\ \\
1 & 1
\end \right
) = \left(\begin
\frac & -\frac \\ \\
-\frac & \frac
\end \right
)
,
:C_3 = \left(\begin
1 & 0 & 0 \\ \\
0 & 1 & 0 \\ \\
0 & 0 & 1
\end \right ) - \frac\left(\begin
1 & 1 & 1 \\ \\
1 & 1 & 1 \\ \\
1 & 1 & 1
\end \right
)
= \left(\begin
\frac & -\frac & -\frac \\ \\
-\frac & \frac & -\frac \\ \\
-\frac & -\frac & \frac
\end \right
)


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Centering matrix」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.